/* * Copyright © 2008 Keith Packard * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ /* * Matrix interfaces */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <math.h> #include <string.h> #include "pixman-private.h" #define F(x) pixman_int_to_fixed (x) static force_inline int count_leading_zeros (uint32_t x) { #ifdef HAVE_BUILTIN_CLZ return __builtin_clz (x); #else int n = 0; while (x) { n++; x >>= 1; } return 32 - n; #endif } /* * Large signed/unsigned integer division with rounding for the platforms with * only 64-bit integer data type supported (no 128-bit data type). * * Arguments: * hi, lo - high and low 64-bit parts of the dividend * div - 48-bit divisor * * Returns: lowest 64 bits of the result as a return value and highest 64 * bits of the result to "result_hi" pointer */ /* grade-school unsigned division (128-bit by 48-bit) with rounding to nearest */ static force_inline uint64_t rounded_udiv_128_by_48 (uint64_t hi, uint64_t lo, uint64_t div, uint64_t *result_hi) { uint64_t tmp, remainder, result_lo; assert(div < ((uint64_t)1 << 48)); remainder = hi % div; *result_hi = hi / div; tmp = (remainder << 16) + (lo >> 48); result_lo = tmp / div; remainder = tmp % div; tmp = (remainder << 16) + ((lo >> 32) & 0xFFFF); result_lo = (result_lo << 16) + (tmp / div); remainder = tmp % div; tmp = (remainder << 16) + ((lo >> 16) & 0xFFFF); result_lo = (result_lo << 16) + (tmp / div); remainder = tmp % div; tmp = (remainder << 16) + (lo & 0xFFFF); result_lo = (result_lo << 16) + (tmp / div); remainder = tmp % div; /* round to nearest */ if (remainder * 2 >= div && ++result_lo == 0) *result_hi += 1; return result_lo; } /* signed division (128-bit by 49-bit) with rounding to nearest */ static inline int64_t rounded_sdiv_128_by_49 (int64_t hi, uint64_t lo, int64_t div, int64_t *signed_result_hi) { uint64_t result_lo, result_hi; int sign = 0; if (div < 0) { div = -div; sign ^= 1; } if (hi < 0) { if (lo != 0) hi++; hi = -hi; lo = -lo; sign ^= 1; } result_lo = rounded_udiv_128_by_48 (hi, lo, div, &result_hi); if (sign) { if (result_lo != 0) result_hi++; result_hi = -result_hi; result_lo = -result_lo; } if (signed_result_hi) { *signed_result_hi = result_hi; } return result_lo; } /* * Multiply 64.16 fixed point value by (2^scalebits) and convert * to 128-bit integer. */ static force_inline void fixed_64_16_to_int128 (int64_t hi, int64_t lo, int64_t *rhi, int64_t *rlo, int scalebits) { /* separate integer and fractional parts */ hi += lo >> 16; lo &= 0xFFFF; if (scalebits <= 0) { *rlo = hi >> (-scalebits); *rhi = *rlo >> 63; } else { *rhi = hi >> (64 - scalebits); *rlo = (uint64_t)hi << scalebits; if (scalebits < 16) *rlo += lo >> (16 - scalebits); else *rlo += lo << (scalebits - 16); } } /* * Convert 112.16 fixed point value to 48.16 with clamping for the out * of range values. */ static force_inline pixman_fixed_48_16_t fixed_112_16_to_fixed_48_16 (int64_t hi, int64_t lo, pixman_bool_t *clampflag) { if ((lo >> 63) != hi) { *clampflag = TRUE; return hi >= 0 ? INT64_MAX : INT64_MIN; } else { return lo; } } /* * Transform a point with 31.16 fixed point coordinates from the destination * space to a point with 48.16 fixed point coordinates in the source space. * No overflows are possible for affine transformations and the results are * accurate including the least significant bit. Projective transformations * may overflow, in this case the results are just clamped to return maximum * or minimum 48.16 values (so that the caller can at least handle the NONE * and PAD repeats correctly) and the return value is FALSE to indicate that * such clamping has happened. */ PIXMAN_EXPORT pixman_bool_t pixman_transform_point_31_16 (const pixman_transform_t *t, const pixman_vector_48_16_t *v, pixman_vector_48_16_t *result) { pixman_bool_t clampflag = FALSE; int i; int64_t tmp[3][2], divint; uint16_t divfrac; /* input vector values must have no more than 31 bits (including sign) * in the integer part */ assert (v->v[0] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[1] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[2] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[2] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); for (i = 0; i < 3; i++) { tmp[i][0] = (int64_t)t->matrix[i][0] * (v->v[0] >> 16); tmp[i][1] = (int64_t)t->matrix[i][0] * (v->v[0] & 0xFFFF); tmp[i][0] += (int64_t)t->matrix[i][1] * (v->v[1] >> 16); tmp[i][1] += (int64_t)t->matrix[i][1] * (v->v[1] & 0xFFFF); tmp[i][0] += (int64_t)t->matrix[i][2] * (v->v[2] >> 16); tmp[i][1] += (int64_t)t->matrix[i][2] * (v->v[2] & 0xFFFF); } /* * separate 64-bit integer and 16-bit fractional parts for the divisor, * which is also scaled by 65536 after fixed point multiplication. */ divint = tmp[2][0] + (tmp[2][1] >> 16); divfrac = tmp[2][1] & 0xFFFF; if (divint == pixman_fixed_1 && divfrac == 0) { /* * this is a simple affine transformation */ result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16); result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16); result->v[2] = pixman_fixed_1; } else if (divint == 0 && divfrac == 0) { /* * handle zero divisor (if the values are non-zero, set the * results to maximum positive or minimum negative) */ clampflag = TRUE; result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16); result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16); if (result->v[0] > 0) result->v[0] = INT64_MAX; else if (result->v[0] < 0) result->v[0] = INT64_MIN; if (result->v[1] > 0) result->v[1] = INT64_MAX; else if (result->v[1] < 0) result->v[1] = INT64_MIN; } else { /* * projective transformation, analyze the top 32 bits of the divisor */ int32_t hi32divbits = divint >> 32; if (hi32divbits < 0) hi32divbits = ~hi32divbits; if (hi32divbits == 0) { /* the divisor is small, we can actually keep all the bits */ int64_t hi, rhi, lo, rlo; int64_t div = (divint << 16) + divfrac; fixed_64_16_to_int128 (tmp[0][0], tmp[0][1], &hi, &lo, 32); rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi); result->v[0] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag); fixed_64_16_to_int128 (tmp[1][0], tmp[1][1], &hi, &lo, 32); rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi); result->v[1] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag); } else { /* the divisor needs to be reduced to 48 bits */ int64_t hi, rhi, lo, rlo, div; int shift = 32 - count_leading_zeros (hi32divbits); fixed_64_16_to_int128 (divint, divfrac, &hi, &div, 16 - shift); fixed_64_16_to_int128 (tmp[0][0], tmp[0][1], &hi, &lo, 32 - shift); rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi); result->v[0] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag); fixed_64_16_to_int128 (tmp[1][0], tmp[1][1], &hi, &lo, 32 - shift); rlo = rounded_sdiv_128_by_49 (hi, lo, div, &rhi); result->v[1] = fixed_112_16_to_fixed_48_16 (rhi, rlo, &clampflag); } } result->v[2] = pixman_fixed_1; return !clampflag; } PIXMAN_EXPORT void pixman_transform_point_31_16_affine (const pixman_transform_t *t, const pixman_vector_48_16_t *v, pixman_vector_48_16_t *result) { int64_t hi0, lo0, hi1, lo1; /* input vector values must have no more than 31 bits (including sign) * in the integer part */ assert (v->v[0] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[1] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); hi0 = (int64_t)t->matrix[0][0] * (v->v[0] >> 16); lo0 = (int64_t)t->matrix[0][0] * (v->v[0] & 0xFFFF); hi0 += (int64_t)t->matrix[0][1] * (v->v[1] >> 16); lo0 += (int64_t)t->matrix[0][1] * (v->v[1] & 0xFFFF); hi0 += (int64_t)t->matrix[0][2]; hi1 = (int64_t)t->matrix[1][0] * (v->v[0] >> 16); lo1 = (int64_t)t->matrix[1][0] * (v->v[0] & 0xFFFF); hi1 += (int64_t)t->matrix[1][1] * (v->v[1] >> 16); lo1 += (int64_t)t->matrix[1][1] * (v->v[1] & 0xFFFF); hi1 += (int64_t)t->matrix[1][2]; result->v[0] = hi0 + ((lo0 + 0x8000) >> 16); result->v[1] = hi1 + ((lo1 + 0x8000) >> 16); result->v[2] = pixman_fixed_1; } PIXMAN_EXPORT void pixman_transform_point_31_16_3d (const pixman_transform_t *t, const pixman_vector_48_16_t *v, pixman_vector_48_16_t *result) { int i; int64_t tmp[3][2]; /* input vector values must have no more than 31 bits (including sign) * in the integer part */ assert (v->v[0] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[1] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[2] < ((pixman_fixed_48_16_t)1 << (30 + 16))); assert (v->v[2] >= -((pixman_fixed_48_16_t)1 << (30 + 16))); for (i = 0; i < 3; i++) { tmp[i][0] = (int64_t)t->matrix[i][0] * (v->v[0] >> 16); tmp[i][1] = (int64_t)t->matrix[i][0] * (v->v[0] & 0xFFFF); tmp[i][0] += (int64_t)t->matrix[i][1] * (v->v[1] >> 16); tmp[i][1] += (int64_t)t->matrix[i][1] * (v->v[1] & 0xFFFF); tmp[i][0] += (int64_t)t->matrix[i][2] * (v->v[2] >> 16); tmp[i][1] += (int64_t)t->matrix[i][2] * (v->v[2] & 0xFFFF); } result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16); result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16); result->v[2] = tmp[2][0] + ((tmp[2][1] + 0x8000) >> 16); } PIXMAN_EXPORT void pixman_transform_init_identity (struct pixman_transform *matrix) { int i; memset (matrix, '\0', sizeof (struct pixman_transform)); for (i = 0; i < 3; i++) matrix->matrix[i][i] = F (1); } typedef pixman_fixed_32_32_t pixman_fixed_34_30_t; PIXMAN_EXPORT pixman_bool_t pixman_transform_point_3d (const struct pixman_transform *transform, struct pixman_vector * vector) { pixman_vector_48_16_t tmp; tmp.v[0] = vector->vector[0]; tmp.v[1] = vector->vector[1]; tmp.v[2] = vector->vector[2]; pixman_transform_point_31_16_3d (transform, &tmp, &tmp); vector->vector[0] = tmp.v[0]; vector->vector[1] = tmp.v[1]; vector->vector[2] = tmp.v[2]; return vector->vector[0] == tmp.v[0] && vector->vector[1] == tmp.v[1] && vector->vector[2] == tmp.v[2]; } PIXMAN_EXPORT pixman_bool_t pixman_transform_point (const struct pixman_transform *transform, struct pixman_vector * vector) { pixman_vector_48_16_t tmp; tmp.v[0] = vector->vector[0]; tmp.v[1] = vector->vector[1]; tmp.v[2] = vector->vector[2]; if (!pixman_transform_point_31_16 (transform, &tmp, &tmp)) return FALSE; vector->vector[0] = tmp.v[0]; vector->vector[1] = tmp.v[1]; vector->vector[2] = tmp.v[2]; return vector->vector[0] == tmp.v[0] && vector->vector[1] == tmp.v[1] && vector->vector[2] == tmp.v[2]; } PIXMAN_EXPORT pixman_bool_t pixman_transform_multiply (struct pixman_transform * dst, const struct pixman_transform *l, const struct pixman_transform *r) { struct pixman_transform d; int dx, dy; int o; for (dy = 0; dy < 3; dy++) { for (dx = 0; dx < 3; dx++) { pixman_fixed_48_16_t v; pixman_fixed_32_32_t partial; v = 0; for (o = 0; o < 3; o++) { partial = (pixman_fixed_32_32_t) l->matrix[dy][o] * (pixman_fixed_32_32_t) r->matrix[o][dx]; v += (partial + 0x8000) >> 16; } if (v > pixman_max_fixed_48_16 || v < pixman_min_fixed_48_16) return FALSE; d.matrix[dy][dx] = (pixman_fixed_t) v; } } *dst = d; return TRUE; } PIXMAN_EXPORT void pixman_transform_init_scale (struct pixman_transform *t, pixman_fixed_t sx, pixman_fixed_t sy) { memset (t, '\0', sizeof (struct pixman_transform)); t->matrix[0][0] = sx; t->matrix[1][1] = sy; t->matrix[2][2] = F (1); } static pixman_fixed_t fixed_inverse (pixman_fixed_t x) { return (pixman_fixed_t) ((((pixman_fixed_48_16_t) F (1)) * F (1)) / x); } PIXMAN_EXPORT pixman_bool_t pixman_transform_scale (struct pixman_transform *forward, struct pixman_transform *reverse, pixman_fixed_t sx, pixman_fixed_t sy) { struct pixman_transform t; if (sx == 0 || sy == 0) return FALSE; if (forward) { pixman_transform_init_scale (&t, sx, sy); if (!pixman_transform_multiply (forward, &t, forward)) return FALSE; } if (reverse) { pixman_transform_init_scale (&t, fixed_inverse (sx), fixed_inverse (sy)); if (!pixman_transform_multiply (reverse, reverse, &t)) return FALSE; } return TRUE; } PIXMAN_EXPORT void pixman_transform_init_rotate (struct pixman_transform *t, pixman_fixed_t c, pixman_fixed_t s) { memset (t, '\0', sizeof (struct pixman_transform)); t->matrix[0][0] = c; t->matrix[0][1] = -s; t->matrix[1][0] = s; t->matrix[1][1] = c; t->matrix[2][2] = F (1); } PIXMAN_EXPORT pixman_bool_t pixman_transform_rotate (struct pixman_transform *forward, struct pixman_transform *reverse, pixman_fixed_t c, pixman_fixed_t s) { struct pixman_transform t; if (forward) { pixman_transform_init_rotate (&t, c, s); if (!pixman_transform_multiply (forward, &t, forward)) return FALSE; } if (reverse) { pixman_transform_init_rotate (&t, c, -s); if (!pixman_transform_multiply (reverse, reverse, &t)) return FALSE; } return TRUE; } PIXMAN_EXPORT void pixman_transform_init_translate (struct pixman_transform *t, pixman_fixed_t tx, pixman_fixed_t ty) { memset (t, '\0', sizeof (struct pixman_transform)); t->matrix[0][0] = F (1); t->matrix[0][2] = tx; t->matrix[1][1] = F (1); t->matrix[1][2] = ty; t->matrix[2][2] = F (1); } PIXMAN_EXPORT pixman_bool_t pixman_transform_translate (struct pixman_transform *forward, struct pixman_transform *reverse, pixman_fixed_t tx, pixman_fixed_t ty) { struct pixman_transform t; if (forward) { pixman_transform_init_translate (&t, tx, ty); if (!pixman_transform_multiply (forward, &t, forward)) return FALSE; } if (reverse) { pixman_transform_init_translate (&t, -tx, -ty); if (!pixman_transform_multiply (reverse, reverse, &t)) return FALSE; } return TRUE; } PIXMAN_EXPORT pixman_bool_t pixman_transform_bounds (const struct pixman_transform *matrix, struct pixman_box16 * b) { struct pixman_vector v[4]; int i; int x1, y1, x2, y2; v[0].vector[0] = F (b->x1); v[0].vector[1] = F (b->y1); v[0].vector[2] = F (1); v[1].vector[0] = F (b->x2); v[1].vector[1] = F (b->y1); v[1].vector[2] = F (1); v[2].vector[0] = F (b->x2); v[2].vector[1] = F (b->y2); v[2].vector[2] = F (1); v[3].vector[0] = F (b->x1); v[3].vector[1] = F (b->y2); v[3].vector[2] = F (1); for (i = 0; i < 4; i++) { if (!pixman_transform_point (matrix, &v[i])) return FALSE; x1 = pixman_fixed_to_int (v[i].vector[0]); y1 = pixman_fixed_to_int (v[i].vector[1]); x2 = pixman_fixed_to_int (pixman_fixed_ceil (v[i].vector[0])); y2 = pixman_fixed_to_int (pixman_fixed_ceil (v[i].vector[1])); if (i == 0) { b->x1 = x1; b->y1 = y1; b->x2 = x2; b->y2 = y2; } else { if (x1 < b->x1) b->x1 = x1; if (y1 < b->y1) b->y1 = y1; if (x2 > b->x2) b->x2 = x2; if (y2 > b->y2) b->y2 = y2; } } return TRUE; } PIXMAN_EXPORT pixman_bool_t pixman_transform_invert (struct pixman_transform * dst, const struct pixman_transform *src) { struct pixman_f_transform m; pixman_f_transform_from_pixman_transform (&m, src); if (!pixman_f_transform_invert (&m, &m)) return FALSE; if (!pixman_transform_from_pixman_f_transform (dst, &m)) return FALSE; return TRUE; } static pixman_bool_t within_epsilon (pixman_fixed_t a, pixman_fixed_t b, pixman_fixed_t epsilon) { pixman_fixed_t t = a - b; if (t < 0) t = -t; return t <= epsilon; } #define EPSILON (pixman_fixed_t) (2) #define IS_SAME(a, b) (within_epsilon (a, b, EPSILON)) #define IS_ZERO(a) (within_epsilon (a, 0, EPSILON)) #define IS_ONE(a) (within_epsilon (a, F (1), EPSILON)) #define IS_UNIT(a) \ (within_epsilon (a, F (1), EPSILON) || \ within_epsilon (a, F (-1), EPSILON) || \ IS_ZERO (a)) #define IS_INT(a) (IS_ZERO (pixman_fixed_frac (a))) PIXMAN_EXPORT pixman_bool_t pixman_transform_is_identity (const struct pixman_transform *t) { return (IS_SAME (t->matrix[0][0], t->matrix[1][1]) && IS_SAME (t->matrix[0][0], t->matrix[2][2]) && !IS_ZERO (t->matrix[0][0]) && IS_ZERO (t->matrix[0][1]) && IS_ZERO (t->matrix[0][2]) && IS_ZERO (t->matrix[1][0]) && IS_ZERO (t->matrix[1][2]) && IS_ZERO (t->matrix[2][0]) && IS_ZERO (t->matrix[2][1])); } PIXMAN_EXPORT pixman_bool_t pixman_transform_is_scale (const struct pixman_transform *t) { return (!IS_ZERO (t->matrix[0][0]) && IS_ZERO (t->matrix[0][1]) && IS_ZERO (t->matrix[0][2]) && IS_ZERO (t->matrix[1][0]) && !IS_ZERO (t->matrix[1][1]) && IS_ZERO (t->matrix[1][2]) && IS_ZERO (t->matrix[2][0]) && IS_ZERO (t->matrix[2][1]) && !IS_ZERO (t->matrix[2][2])); } PIXMAN_EXPORT pixman_bool_t pixman_transform_is_int_translate (const struct pixman_transform *t) { return (IS_ONE (t->matrix[0][0]) && IS_ZERO (t->matrix[0][1]) && IS_INT (t->matrix[0][2]) && IS_ZERO (t->matrix[1][0]) && IS_ONE (t->matrix[1][1]) && IS_INT (t->matrix[1][2]) && IS_ZERO (t->matrix[2][0]) && IS_ZERO (t->matrix[2][1]) && IS_ONE (t->matrix[2][2])); } PIXMAN_EXPORT pixman_bool_t pixman_transform_is_inverse (const struct pixman_transform *a, const struct pixman_transform *b) { struct pixman_transform t; if (!pixman_transform_multiply (&t, a, b)) return FALSE; return pixman_transform_is_identity (&t); } PIXMAN_EXPORT void pixman_f_transform_from_pixman_transform (struct pixman_f_transform * ft, const struct pixman_transform *t) { int i, j; for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) ft->m[j][i] = pixman_fixed_to_double (t->matrix[j][i]); } } PIXMAN_EXPORT pixman_bool_t pixman_transform_from_pixman_f_transform (struct pixman_transform * t, const struct pixman_f_transform *ft) { int i, j; for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) { double d = ft->m[j][i]; if (d < -32767.0 || d > 32767.0) return FALSE; d = d * 65536.0 + 0.5; t->matrix[j][i] = (pixman_fixed_t) floor (d); } } return TRUE; } PIXMAN_EXPORT pixman_bool_t pixman_f_transform_invert (struct pixman_f_transform * dst, const struct pixman_f_transform *src) { static const int a[3] = { 2, 2, 1 }; static const int b[3] = { 1, 0, 0 }; pixman_f_transform_t d; double det; int i, j; det = 0; for (i = 0; i < 3; i++) { double p; int ai = a[i]; int bi = b[i]; p = src->m[i][0] * (src->m[ai][2] * src->m[bi][1] - src->m[ai][1] * src->m[bi][2]); if (i == 1) p = -p; det += p; } if (det == 0) return FALSE; det = 1 / det; for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) { double p; int ai = a[i]; int aj = a[j]; int bi = b[i]; int bj = b[j]; p = (src->m[ai][aj] * src->m[bi][bj] - src->m[ai][bj] * src->m[bi][aj]); if (((i + j) & 1) != 0) p = -p; d.m[j][i] = det * p; } } *dst = d; return TRUE; } PIXMAN_EXPORT pixman_bool_t pixman_f_transform_point (const struct pixman_f_transform *t, struct pixman_f_vector * v) { struct pixman_f_vector result; int i, j; double a; for (j = 0; j < 3; j++) { a = 0; for (i = 0; i < 3; i++) a += t->m[j][i] * v->v[i]; result.v[j] = a; } if (!result.v[2]) return FALSE; for (j = 0; j < 2; j++) v->v[j] = result.v[j] / result.v[2]; v->v[2] = 1; return TRUE; } PIXMAN_EXPORT void pixman_f_transform_point_3d (const struct pixman_f_transform *t, struct pixman_f_vector * v) { struct pixman_f_vector result; int i, j; double a; for (j = 0; j < 3; j++) { a = 0; for (i = 0; i < 3; i++) a += t->m[j][i] * v->v[i]; result.v[j] = a; } *v = result; } PIXMAN_EXPORT void pixman_f_transform_multiply (struct pixman_f_transform * dst, const struct pixman_f_transform *l, const struct pixman_f_transform *r) { struct pixman_f_transform d; int dx, dy; int o; for (dy = 0; dy < 3; dy++) { for (dx = 0; dx < 3; dx++) { double v = 0; for (o = 0; o < 3; o++) v += l->m[dy][o] * r->m[o][dx]; d.m[dy][dx] = v; } } *dst = d; } PIXMAN_EXPORT void pixman_f_transform_init_scale (struct pixman_f_transform *t, double sx, double sy) { t->m[0][0] = sx; t->m[0][1] = 0; t->m[0][2] = 0; t->m[1][0] = 0; t->m[1][1] = sy; t->m[1][2] = 0; t->m[2][0] = 0; t->m[2][1] = 0; t->m[2][2] = 1; } PIXMAN_EXPORT pixman_bool_t pixman_f_transform_scale (struct pixman_f_transform *forward, struct pixman_f_transform *reverse, double sx, double sy) { struct pixman_f_transform t; if (sx == 0 || sy == 0) return FALSE; if (forward) { pixman_f_transform_init_scale (&t, sx, sy); pixman_f_transform_multiply (forward, &t, forward); } if (reverse) { pixman_f_transform_init_scale (&t, 1 / sx, 1 / sy); pixman_f_transform_multiply (reverse, reverse, &t); } return TRUE; } PIXMAN_EXPORT void pixman_f_transform_init_rotate (struct pixman_f_transform *t, double c, double s) { t->m[0][0] = c; t->m[0][1] = -s; t->m[0][2] = 0; t->m[1][0] = s; t->m[1][1] = c; t->m[1][2] = 0; t->m[2][0] = 0; t->m[2][1] = 0; t->m[2][2] = 1; } PIXMAN_EXPORT pixman_bool_t pixman_f_transform_rotate (struct pixman_f_transform *forward, struct pixman_f_transform *reverse, double c, double s) { struct pixman_f_transform t; if (forward) { pixman_f_transform_init_rotate (&t, c, s); pixman_f_transform_multiply (forward, &t, forward); } if (reverse) { pixman_f_transform_init_rotate (&t, c, -s); pixman_f_transform_multiply (reverse, reverse, &t); } return TRUE; } PIXMAN_EXPORT void pixman_f_transform_init_translate (struct pixman_f_transform *t, double tx, double ty) { t->m[0][0] = 1; t->m[0][1] = 0; t->m[0][2] = tx; t->m[1][0] = 0; t->m[1][1] = 1; t->m[1][2] = ty; t->m[2][0] = 0; t->m[2][1] = 0; t->m[2][2] = 1; } PIXMAN_EXPORT pixman_bool_t pixman_f_transform_translate (struct pixman_f_transform *forward, struct pixman_f_transform *reverse, double tx, double ty) { struct pixman_f_transform t; if (forward) { pixman_f_transform_init_translate (&t, tx, ty); pixman_f_transform_multiply (forward, &t, forward); } if (reverse) { pixman_f_transform_init_translate (&t, -tx, -ty); pixman_f_transform_multiply (reverse, reverse, &t); } return TRUE; } PIXMAN_EXPORT pixman_bool_t pixman_f_transform_bounds (const struct pixman_f_transform *t, struct pixman_box16 * b) { struct pixman_f_vector v[4]; int i; int x1, y1, x2, y2; v[0].v[0] = b->x1; v[0].v[1] = b->y1; v[0].v[2] = 1; v[1].v[0] = b->x2; v[1].v[1] = b->y1; v[1].v[2] = 1; v[2].v[0] = b->x2; v[2].v[1] = b->y2; v[2].v[2] = 1; v[3].v[0] = b->x1; v[3].v[1] = b->y2; v[3].v[2] = 1; for (i = 0; i < 4; i++) { if (!pixman_f_transform_point (t, &v[i])) return FALSE; x1 = floor (v[i].v[0]); y1 = floor (v[i].v[1]); x2 = ceil (v[i].v[0]); y2 = ceil (v[i].v[1]); if (i == 0) { b->x1 = x1; b->y1 = y1; b->x2 = x2; b->y2 = y2; } else { if (x1 < b->x1) b->x1 = x1; if (y1 < b->y1) b->y1 = y1; if (x2 > b->x2) b->x2 = x2; if (y2 > b->y2) b->y2 = y2; } } return TRUE; } PIXMAN_EXPORT void pixman_f_transform_init_identity (struct pixman_f_transform *t) { int i, j; for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) t->m[j][i] = i == j ? 1 : 0; } }