/* * mdadm - manage Linux "md" devices aka RAID arrays. * * Copyright (C) 2001-2009 Neil Brown <neilb@suse.de> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Neil Brown * Email: <neilb@suse.de> */ #define _GNU_SOURCE #define _FILE_OFFSET_BITS 64 #include <unistd.h> #ifdef __GLIBC__ extern __off64_t lseek64 __P ((int __fd, __off64_t __offset, int __whence)); #elif !defined(lseek64) # if defined(__NO_STAT64) || __WORDSIZE != 32 # define lseek64 lseek # endif #endif #include <sys/types.h> #include <sys/stat.h> #include <stdint.h> #include <stdlib.h> #include <time.h> #include <sys/time.h> #include <getopt.h> #include <fcntl.h> #include <stdio.h> #include <errno.h> #include <string.h> #include <syslog.h> #ifdef __dietlibc__ #include <strings.h> /* dietlibc has deprecated random and srandom!! */ #define random rand #define srandom srand #endif #ifdef NO_COROSYNC #define CS_OK 1 typedef uint64_t cmap_handle_t; #else #include <corosync/cmap.h> #endif #ifndef NO_DLM #include <libdlm.h> #include <errno.h> #else #define LKF_NOQUEUE 0x00000001 #define LKF_CONVERT 0x00000004 #define LKM_PWMODE 4 #define EUNLOCK 0x10002 typedef void *dlm_lshandle_t; struct dlm_lksb { int sb_status; uint32_t sb_lkid; char sb_flags; char *sb_lvbptr; }; #endif #include <linux/kdev_t.h> /*#include <linux/fs.h> */ #include <sys/mount.h> #include <asm/types.h> #include <sys/ioctl.h> #define MD_MAJOR 9 #define MdpMinorShift 6 #ifndef BLKGETSIZE64 #define BLKGETSIZE64 _IOR(0x12,114,size_t) /* return device size in bytes (u64 *arg) */ #endif #define DEFAULT_CHUNK 512 #define DEFAULT_BITMAP_CHUNK 4096 #define DEFAULT_BITMAP_DELAY 5 #define DEFAULT_MAX_WRITE_BEHIND 256 /* MAP_DIR should be somewhere that persists across the pivotroot * from early boot to late boot. * /run seems to have emerged as the best standard. */ #ifndef MAP_DIR #define MAP_DIR "/run/mdadm" #endif /* MAP_DIR */ /* MAP_FILE is what we name the map file we put in MAP_DIR, in case you * want something other than the default of "map" */ #ifndef MAP_FILE #define MAP_FILE "map" #endif /* MAP_FILE */ /* MDMON_DIR is where pid and socket files used for communicating * with mdmon normally live. Best is /var/run/mdadm as * mdmon is needed at early boot then it needs to write there prior * to /var/run being mounted read/write, and it also then needs to * persist beyond when /var/run is mounter read-only. So, to be * safe, the default is somewhere that is read/write early in the * boot process and stays up as long as possible during shutdown. */ #ifndef MDMON_DIR #define MDMON_DIR "/run/mdadm" #endif /* MDMON_DIR */ /* FAILED_SLOTS is where to save files storing recent removal of array * member in order to allow future reuse of disk inserted in the same * slot for array recovery */ #ifndef FAILED_SLOTS_DIR #define FAILED_SLOTS_DIR "/run/mdadm/failed-slots" #endif /* FAILED_SLOTS */ #include "md_u.h" #include "md_p.h" #include "bitmap.h" #include "msg.h" #include <endian.h> /* Redhat don't like to #include <asm/byteorder.h>, and * some time include <linux/byteorder/xxx_endian.h> isn't enough, * and there is no standard conversion function so... */ /* And dietlibc doesn't think byteswap is ok, so.. */ /* #include <byteswap.h> */ #ifndef bswap_16 #define bswap_16(x) (((x) & 0x00ffU) << 8 | \ ((x) & 0xff00U) >> 8) #endif #ifndef bswap_32 #define bswap_32(x) (((x) & 0x000000ffU) << 24 | \ ((x) & 0xff000000U) >> 24 | \ ((x) & 0x0000ff00U) << 8 | \ ((x) & 0x00ff0000U) >> 8) #endif #ifndef bswap_64 #define bswap_64(x) (((x) & 0x00000000000000ffULL) << 56 | \ ((x) & 0xff00000000000000ULL) >> 56 | \ ((x) & 0x000000000000ff00ULL) << 40 | \ ((x) & 0x00ff000000000000ULL) >> 40 | \ ((x) & 0x0000000000ff0000ULL) << 24 | \ ((x) & 0x0000ff0000000000ULL) >> 24 | \ ((x) & 0x00000000ff000000ULL) << 8 | \ ((x) & 0x000000ff00000000ULL) >> 8) #endif #if !defined(__KLIBC__) #if BYTE_ORDER == LITTLE_ENDIAN #define __cpu_to_le16(_x) (unsigned int)(_x) #define __cpu_to_le32(_x) (unsigned int)(_x) #define __cpu_to_le64(_x) (unsigned long long)(_x) #define __le16_to_cpu(_x) (unsigned int)(_x) #define __le32_to_cpu(_x) (unsigned int)(_x) #define __le64_to_cpu(_x) (unsigned long long)(_x) #define __cpu_to_be16(_x) bswap_16(_x) #define __cpu_to_be32(_x) bswap_32(_x) #define __cpu_to_be64(_x) bswap_64(_x) #define __be16_to_cpu(_x) bswap_16(_x) #define __be32_to_cpu(_x) bswap_32(_x) #define __be64_to_cpu(_x) bswap_64(_x) #elif BYTE_ORDER == BIG_ENDIAN #define __cpu_to_le16(_x) bswap_16(_x) #define __cpu_to_le32(_x) bswap_32(_x) #define __cpu_to_le64(_x) bswap_64(_x) #define __le16_to_cpu(_x) bswap_16(_x) #define __le32_to_cpu(_x) bswap_32(_x) #define __le64_to_cpu(_x) bswap_64(_x) #define __cpu_to_be16(_x) (unsigned int)(_x) #define __cpu_to_be32(_x) (unsigned int)(_x) #define __cpu_to_be64(_x) (unsigned long long)(_x) #define __be16_to_cpu(_x) (unsigned int)(_x) #define __be32_to_cpu(_x) (unsigned int)(_x) #define __be64_to_cpu(_x) (unsigned long long)(_x) #else # error "unknown endianness." #endif #endif /* __KLIBC__ */ /* * Check at compile time that something is of a particular type. * Always evaluates to 1 so you may use it easily in comparisons. */ #define typecheck(type,x) \ ({ type __dummy; \ typeof(x) __dummy2; \ (void)(&__dummy == &__dummy2); \ 1; \ }) /* * These inlines deal with timer wrapping correctly. * * time_after(a,b) returns true if the time a is after time b. */ #define time_after(a,b) \ (typecheck(unsigned int, a) && \ typecheck(unsigned int, b) && \ ((int)((b) - (a)) < 0)) #define time_before(a,b) time_after(b,a) /* * min()/max()/clamp() macros that also do * strict type-checking.. See the * "unnecessary" pointer comparison. */ #define min(x, y) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ (void) (&_min1 == &_min2); \ _min1 < _min2 ? _min1 : _min2; }) #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ (void) (&_max1 == &_max2); \ _max1 > _max2 ? _max1 : _max2; }) #define ARRAY_SIZE(x) (sizeof(x)/sizeof(x[0])) extern const char Name[]; /* general information that might be extracted from a superblock */ struct mdinfo { mdu_array_info_t array; mdu_disk_info_t disk; __u64 events; int uuid[4]; char name[33]; unsigned long long data_offset; unsigned long long new_data_offset; unsigned long long component_size; /* same as array.size, except in * sectors and up to 64bits. */ unsigned long long custom_array_size; /* size for non-default sized * arrays (in sectors) */ #define NO_RESHAPE 0 #define VOLUME_RESHAPE 1 #define CONTAINER_RESHAPE 2 #define RESHAPE_NO_BACKUP 16 /* Mask 'or'ed in */ int reshape_active; unsigned long long reshape_progress; int recovery_blocked; /* for external metadata it * indicates that there is * reshape in progress in * container, * for native metadata it is * reshape_active field mirror */ int journal_device_required; int journal_clean; /* During reshape we can sometimes change the data_offset to avoid * over-writing still-valid data. We need to know if there is space. * So getinfo_super will fill in space_before and space_after in sectors. * data_offset can be increased or decreased by this amount. */ unsigned long long space_before, space_after; union { unsigned long long resync_start; /* per-array resync position */ unsigned long long recovery_start; /* per-device rebuild position */ #define MaxSector (~0ULL) /* resync/recovery complete position */ }; long bitmap_offset; /* 0 == none, 1 == a file */ unsigned long safe_mode_delay; /* ms delay to mark clean */ int new_level, delta_disks, new_layout, new_chunk; int errors; unsigned long cache_size; /* size of raid456 stripe cache*/ int mismatch_cnt; char text_version[50]; int container_member; /* for assembling external-metatdata arrays * This is to be used internally by metadata * handler only */ int container_enough; /* flag external handlers can set to * indicate that subarrays have not enough (-1), * enough to start (0), or all expected disks (1) */ char sys_name[20]; struct mdinfo *devs; struct mdinfo *next; /* Device info for mdmon: */ int recovery_fd; int state_fd; #define DS_FAULTY 1 #define DS_INSYNC 2 #define DS_WRITE_MOSTLY 4 #define DS_SPARE 8 #define DS_BLOCKED 16 #define DS_REMOVE 1024 #define DS_UNBLOCK 2048 int prev_state, curr_state, next_state; /* info read from sysfs */ char sysfs_array_state[20]; }; struct createinfo { int uid; int gid; int autof; int mode; int symlinks; int names; int bblist; struct supertype *supertype; }; enum mode { ASSEMBLE=1, BUILD, CREATE, MANAGE, MISC, MONITOR, GROW, INCREMENTAL, AUTODETECT, mode_count }; extern char short_options[]; extern char short_bitmap_options[]; extern char short_bitmap_auto_options[]; extern struct option long_options[]; extern char Version[], Usage[], Help[], OptionHelp[], *mode_help[], Help_create[], Help_build[], Help_assemble[], Help_grow[], Help_incr[], Help_manage[], Help_misc[], Help_monitor[], Help_config[]; /* for option that don't have short equivilents, we assign arbitrary * numbers later than any 'short' character option. */ enum special_options { AssumeClean = 300, BitmapChunk, WriteBehind, ReAdd, NoDegraded, Sparc22, BackupFile, HomeHost, AutoHomeHost, Symlinks, AutoDetect, Waitclean, DetailPlatform, KillSubarray, UpdateSubarray, IncrementalPath, NoSharing, HelpOptions, Brief, ManageOpt, Add, AddSpare, AddJournal, Remove, Fail, Replace, With, MiscOpt, WaitOpt, ConfigFile, ChunkSize, WriteMostly, Layout, Auto, Force, SuperMinor, EMail, ProgramOpt, Increment, Fork, Bitmap, RebuildMapOpt, InvalidBackup, UdevRules, FreezeReshape, Continue, OffRootOpt, Prefer, KillOpt, DataOffset, ExamineBB, Dump, Restore, Action, Nodes, ClusterName, ClusterConfirm, WriteJournal, }; enum prefix_standard { JEDEC, IEC }; enum bitmap_update { NoUpdate, NameUpdate, NodeNumUpdate, }; /* structures read from config file */ /* List of mddevice names and identifiers * Identifiers can be: * uuid=128-hex-uuid * super-minor=decimal-minor-number-from-superblock * devices=comma,separated,list,of,device,names,with,wildcards * * If multiple fields are present, the intersection of all matching * devices is considered */ #define UnSet (0xfffe) struct mddev_ident { char *devname; int uuid_set; int uuid[4]; char name[33]; int super_minor; char *devices; /* comma separated list of device * names with wild cards */ int level; int raid_disks; int spare_disks; struct supertype *st; int autof; /* 1 for normal, 2 for partitioned */ char *spare_group; char *bitmap_file; int bitmap_fd; char *container; /* /dev/whatever name of container, or * uuid of container. You would expect * this to be the 'devname' or UUID * of some other entry. */ char *member; /* subarray within a container */ struct mddev_ident *next; union { /* fields needed by different users of this structure */ int assembled; /* set when assembly succeeds */ }; }; struct context { int readonly; int runstop; int verbose; int brief; int force; char *homehost; int require_homehost; char *prefer; int export; int test; char *subarray; char *update; int scan; int SparcAdjust; int autof; int delay; int freeze_reshape; char *backup_file; int invalid_backup; char *action; int nodes; char *homecluster; }; struct shape { int raiddisks; int sparedisks; int journaldisks; int level; int layout; char *layout_str; int chunk; int bitmap_chunk; char *bitmap_file; int assume_clean; int write_behind; unsigned long long size; }; /* List of device names - wildcards expanded */ struct mddev_dev { char *devname; int disposition; /* 'a' for add, 'r' for remove, 'f' for fail, * 'A' for re_add. * Not set for names read from .config */ char writemostly; /* 1 for 'set writemostly', 2 for 'clear writemostly' */ int used; /* set when used */ long long data_offset; struct mddev_dev *next; }; typedef struct mapping { char *name; int num; } mapping_t; struct mdstat_ent { char devnm[32]; int active; char *level; char *pattern; /* U or up, _ for down */ int percent; /* -1 if no resync */ int resync; /* 3 if check, 2 if reshape, 1 if resync, 0 if recovery */ int devcnt; int raid_disks; char * metadata_version; struct dev_member { char *name; struct dev_member *next; } *members; struct mdstat_ent *next; }; extern struct mdstat_ent *mdstat_read(int hold, int start); extern void mdstat_close(void); extern void free_mdstat(struct mdstat_ent *ms); extern void mdstat_wait(int seconds); extern void mdstat_wait_fd(int fd, const sigset_t *sigmask); extern int mddev_busy(char *devnm); extern struct mdstat_ent *mdstat_by_component(char *name); extern struct mdstat_ent *mdstat_by_subdev(char *subdev, char *container); struct map_ent { struct map_ent *next; char devnm[32]; char metadata[20]; int uuid[4]; int bad; char *path; }; extern int map_update(struct map_ent **mpp, char *devnm, char *metadata, int uuid[4], char *path); extern void map_remove(struct map_ent **map, char *devnm); extern struct map_ent *map_by_uuid(struct map_ent **map, int uuid[4]); extern struct map_ent *map_by_devnm(struct map_ent **map, char *devnm); extern void map_free(struct map_ent *map); extern struct map_ent *map_by_name(struct map_ent **map, char *name); extern void map_read(struct map_ent **melp); extern int map_write(struct map_ent *mel); extern void map_delete(struct map_ent **mapp, char *devnm); extern void map_add(struct map_ent **melp, char *devnm, char *metadata, int uuid[4], char *path); extern int map_lock(struct map_ent **melp); extern void map_unlock(struct map_ent **melp); extern void map_fork(void); /* various details can be requested */ enum sysfs_read_flags { GET_LEVEL = (1 << 0), GET_LAYOUT = (1 << 1), GET_COMPONENT = (1 << 2), GET_CHUNK = (1 << 3), GET_CACHE = (1 << 4), GET_MISMATCH = (1 << 5), GET_VERSION = (1 << 6), GET_DISKS = (1 << 7), GET_DEGRADED = (1 << 8), GET_SAFEMODE = (1 << 9), GET_BITMAP_LOCATION = (1 << 10), GET_DEVS = (1 << 20), /* gets role, major, minor */ GET_OFFSET = (1 << 21), GET_SIZE = (1 << 22), GET_STATE = (1 << 23), GET_ERROR = (1 << 24), GET_ARRAY_STATE = (1 << 25), }; /* If fd >= 0, get the array it is open on, * else use devnm. */ extern int sysfs_open(char *devnm, char *devname, char *attr); extern void sysfs_init(struct mdinfo *mdi, int fd, char *devnm); extern void sysfs_init_dev(struct mdinfo *mdi, unsigned long devid); extern void sysfs_free(struct mdinfo *sra); extern struct mdinfo *sysfs_read(int fd, char *devnm, unsigned long options); extern int sysfs_attr_match(const char *attr, const char *str); extern int sysfs_match_word(const char *word, char **list); extern int sysfs_set_str(struct mdinfo *sra, struct mdinfo *dev, char *name, char *val); extern int sysfs_set_num(struct mdinfo *sra, struct mdinfo *dev, char *name, unsigned long long val); extern int sysfs_set_num_signed(struct mdinfo *sra, struct mdinfo *dev, char *name, long long val); extern int sysfs_uevent(struct mdinfo *sra, char *event); extern int sysfs_get_fd(struct mdinfo *sra, struct mdinfo *dev, char *name); extern int sysfs_fd_get_ll(int fd, unsigned long long *val); extern int sysfs_get_ll(struct mdinfo *sra, struct mdinfo *dev, char *name, unsigned long long *val); extern int sysfs_fd_get_two(int fd, unsigned long long *v1, unsigned long long *v2); extern int sysfs_get_two(struct mdinfo *sra, struct mdinfo *dev, char *name, unsigned long long *v1, unsigned long long *v2); extern int sysfs_fd_get_str(int fd, char *val, int size); extern int sysfs_attribute_available(struct mdinfo *sra, struct mdinfo *dev, char *name); extern int sysfs_get_str(struct mdinfo *sra, struct mdinfo *dev, char *name, char *val, int size); extern int sysfs_set_safemode(struct mdinfo *sra, unsigned long ms); extern int sysfs_set_array(struct mdinfo *info, int vers); extern int sysfs_add_disk(struct mdinfo *sra, struct mdinfo *sd, int resume); extern int sysfs_disk_to_scsi_id(int fd, __u32 *id); extern int sysfs_unique_holder(char *devnm, long rdev); extern int sysfs_freeze_array(struct mdinfo *sra); extern int sysfs_wait(int fd, int *msec); extern int load_sys(char *path, char *buf); extern int reshape_prepare_fdlist(char *devname, struct mdinfo *sra, int raid_disks, int nrdisks, unsigned long blocks, char *backup_file, int *fdlist, unsigned long long *offsets); extern void reshape_free_fdlist(int *fdlist, unsigned long long *offsets, int size); extern int reshape_open_backup_file(char *backup, int fd, char *devname, long blocks, int *fdlist, unsigned long long *offsets, char *sysfs_name, int restart); extern unsigned long compute_backup_blocks(int nchunk, int ochunk, unsigned int ndata, unsigned int odata); extern char *locate_backup(char *name); extern char *make_backup(char *name); extern int save_stripes(int *source, unsigned long long *offsets, int raid_disks, int chunk_size, int level, int layout, int nwrites, int *dest, unsigned long long start, unsigned long long length, char *buf); extern int restore_stripes(int *dest, unsigned long long *offsets, int raid_disks, int chunk_size, int level, int layout, int source, unsigned long long read_offset, unsigned long long start, unsigned long long length, char *src_buf); #ifndef Sendmail #define Sendmail "/usr/lib/sendmail -t" #endif #define SYSLOG_FACILITY LOG_DAEMON extern char *map_num(mapping_t *map, int num); extern int map_name(mapping_t *map, char *name); extern mapping_t r5layout[], r6layout[], pers[], modes[], faultylayout[]; extern char *map_dev_preferred(int major, int minor, int create, char *prefer); static inline char *map_dev(int major, int minor, int create) { return map_dev_preferred(major, minor, create, NULL); } struct active_array; struct metadata_update; /* 'struct reshape' records the intermediate states of * a general reshape. * The starting geometry is converted to the 'before' geometry * by at most an atomic level change. They could be the same. * Similarly the 'after' geometry is converted to the final * geometry by at most a level change. * Note that 'before' and 'after' must have the same level. * 'blocks' is the minimum number of sectors for a reshape unit. * This will be a multiple of the stripe size in each of the * 'before' and 'after' geometries. * If 'blocks' is 0, no restriping is necessary. * 'min_offset_change' is the minimum change to data_offset to * allow the reshape to happen. It is at least the larger of * the old and new chunk sizes, and typically the same as 'blocks' * divided by number of data disks. */ struct reshape { int level; int parity; /* number of parity blocks/devices */ struct { int layout; int data_disks; } before, after; unsigned long long backup_blocks; unsigned long long min_offset_change; unsigned long long stripes; /* number of old stripes that comprise 'blocks'*/ unsigned long long new_size; /* New size of array in sectors */ }; /* A superswitch provides entry point the a metadata handler. * * The superswitch primarily operates on some "metadata" that * is accessed via the 'supertype'. * This metadata has one of three possible sources. * 1/ It is read from a single device. In this case it may not completely * describe the array or arrays as some information might be on other * devices. * 2/ It is read from all devices in a container. In this case all * information is present. * 3/ It is created by ->init_super / ->add_to_super. In this case it will * be complete once enough ->add_to_super calls have completed. * * When creating an array inside a container, the metadata will be * formed by a combination of 2 and 3. The metadata or the array is read, * then new information is added. * * The metadata must sometimes have a concept of a 'current' array * and a 'current' device. * The 'current' array is set by init_super to be the newly created array, * or is set by super_by_fd when it finds it is looking at an array inside * a container. * * The 'current' device is either the device that the metadata was read from * in case 1, or the last device added by add_to_super in case 3. * Case 2 does not identify a 'current' device. */ extern struct superswitch { /* Used to report details of metadata read from a component * device. ->load_super has been called. */ void (*examine_super)(struct supertype *st, char *homehost); void (*brief_examine_super)(struct supertype *st, int verbose); void (*brief_examine_subarrays)(struct supertype *st, int verbose); void (*export_examine_super)(struct supertype *st); int (*examine_badblocks)(struct supertype *st, int fd, char *devname); int (*copy_metadata)(struct supertype *st, int from, int to); /* Used to report details of an active array. * ->load_super was possibly given a 'component' string. */ void (*detail_super)(struct supertype *st, char *homehost); void (*brief_detail_super)(struct supertype *st); void (*export_detail_super)(struct supertype *st); /* Optional: platform hardware / firmware details */ int (*detail_platform)(int verbose, int enumerate_only, char *controller_path); int (*export_detail_platform)(int verbose, char *controller_path); /* Used: * to get uuid to storing in bitmap metadata * and 'reshape' backup-data metadata * To see if a device is being re-added to an array it was part of. */ void (*uuid_from_super)(struct supertype *st, int uuid[4]); /* Extract generic details from metadata. This could be details about * the container, or about an individual array within the container. * The determination is made either by: * load_super being given a 'component' string. * validate_geometry determining what to create. * The info includes both array information and device information. * The particular device should be: * The last device added by add_to_super * The device the metadata was loaded from by load_super * If 'map' is present, then it is an array raid_disks long * (raid_disk must already be set and correct) and it is filled * with 1 for slots that are thought to be active and 0 for slots which * appear to be failed/missing. * *info is zeroed out before data is added. */ void (*getinfo_super)(struct supertype *st, struct mdinfo *info, char *map); struct mdinfo *(*getinfo_super_disks)(struct supertype *st); /* Check if the given metadata is flagged as belonging to "this" * host. 0 for 'no', 1 for 'yes', -1 for "Don't record homehost" */ int (*match_home)(struct supertype *st, char *homehost); /* Make one of several generic modifications to metadata * prior to assembly (or other times). * sparc2.2 - first bug in early 0.90 metadata * super-minor - change name of 0.90 metadata * summaries - 'correct' any redundant data * resync - mark array as dirty to trigger a resync. * uuid - set new uuid - only 0.90 or 1.x * name - change the name of the array (where supported) * homehost - change which host this array is tied to. * devicesize - If metadata is at start of device, change recorded * device size to match actual device size * byteorder - swap bytes for 0.90 metadata * * force-one - mark that device as uptodate, not old or failed. * force-array - mark array as clean if it would not otherwise * assemble * assemble - not sure how this is different from force-one... * linear-grow-new - add a new device to a linear array, but don't * change the size: so superblock still matches * linear-grow-update - now change the size of the array. * writemostly - set the WriteMostly1 bit in the superblock devflags * readwrite - clear the WriteMostly1 bit in the superblock devflags * no-bitmap - clear any record that a bitmap is present. * bbl - add a bad-block-log if possible * no-bbl - remove any bad-block-log is it is empty. * force-no-bbl - remove any bad-block-log even if empty. * revert-reshape - If a reshape is in progress, modify metadata so * it will resume going in the opposite direction. */ int (*update_super)(struct supertype *st, struct mdinfo *info, char *update, char *devname, int verbose, int uuid_set, char *homehost); /* Create new metadata for new array as described. This could * be a new container, or an array in a pre-existing container. * Also used to zero metadata prior to writing it to invalidate old * metadata. */ int (*init_super)(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid, unsigned long long data_offset); /* update the metadata to include new device, either at create or * when hot-adding a spare. */ int (*add_to_super)(struct supertype *st, mdu_disk_info_t *dinfo, int fd, char *devname, unsigned long long data_offset); /* update the metadata to delete a device, * when hot-removing. */ int (*remove_from_super)(struct supertype *st, mdu_disk_info_t *dinfo); /* Write metadata to one device when fixing problems or adding * a new device. */ int (*store_super)(struct supertype *st, int fd); /* Write all metadata for this array. */ int (*write_init_super)(struct supertype *st); /* Check if metadata read from one device is compatible with an array, * used when assembling an array, or pseudo-assembling was with * "--examine --brief" * If "st" has not yet been loaded the superblock from, "tst" is * moved in, otherwise the superblock in 'st' is compared with * 'tst'. */ int (*compare_super)(struct supertype *st, struct supertype *tst); /* Load metadata from a single device. If 'devname' is not NULL * print error messages as appropriate */ int (*load_super)(struct supertype *st, int fd, char *devname); /* 'fd' is a 'container' md array - load array metadata from the * whole container. */ int (*load_container)(struct supertype *st, int fd, char *devname); /* If 'arg' is a valid name of this metadata type, allocate and * return a 'supertype' for the particular minor version */ struct supertype * (*match_metadata_desc)(char *arg); /* If a device has the given size, and the data_offset has been * requested - work out how much space is available for data. * This involves adjusting for reserved space (e.g. bitmaps) * and for any rounding. * 'mdadm' only calls this for existing arrays where a possible * spare is being added. However some super-handlers call it * internally from validate_geometry when creating an array. */ __u64 (*avail_size)(struct supertype *st, __u64 size, unsigned long long data_offset); /* This is similar to 'avail_size' in purpose, but is used for * containers for which there is no 'component size' to compare. * This reports that whole-device size which is a minimum */ unsigned long long (*min_acceptable_spare_size)(struct supertype *st); /* Find somewhere to put a bitmap - possibly auto-size it - and * update the metadata to record this. The array may be newly * created, in which case data_size may be updated, or it might * already exist. Metadata handler can know if init_super * has been called, but not write_init_super. */ int (*add_internal_bitmap)(struct supertype *st, int *chunkp, int delay, int write_behind, unsigned long long size, int may_change, int major); /* Seek 'fd' to start of write-intent-bitmap. Must be an * md-native format bitmap */ int (*locate_bitmap)(struct supertype *st, int fd); /* if add_internal_bitmap succeeded for existing array, this * writes it out. */ int (*write_bitmap)(struct supertype *st, int fd, enum bitmap_update update); /* Free the superblock and any other allocated data */ void (*free_super)(struct supertype *st); /* validate_geometry is called with an st returned by * match_metadata_desc. * It should check that the geometry described is compatible with * the metadata type. It will be called repeatedly as devices * added to validate changing size and new devices. If there are * inter-device dependencies, it should record sufficient details * so these can be validated. * Both 'size' and '*freesize' are in sectors. chunk is KiB. * Return value is: * 1: everything is OK * 0: not OK for some reason - if 'verbose', then error was reported. * -1: st->sb was NULL, 'subdev' is a member of a container of this * type, but array is not acceptable for some reason * message was reported even if verbose is 0. */ int (*validate_geometry)(struct supertype *st, int level, int layout, int raiddisks, int *chunk, unsigned long long size, unsigned long long data_offset, char *subdev, unsigned long long *freesize, int verbose); /* Return a linked list of 'mdinfo' structures for all arrays * in the container. For non-containers, it is like * getinfo_super with an allocated mdinfo.*/ struct mdinfo *(*container_content)(struct supertype *st, char *subarray); /* query the supertype for default geometry */ void (*default_geometry)(struct supertype *st, int *level, int *layout, int *chunk); /* optional */ /* Permit subarray's to be deleted from inactive containers */ int (*kill_subarray)(struct supertype *st); /* optional */ /* Permit subarray's to be modified */ int (*update_subarray)(struct supertype *st, char *subarray, char *update, struct mddev_ident *ident); /* optional */ /* Check if reshape is supported for this external format. * st is obtained from super_by_fd() where st->subarray[0] is * initialized to indicate if reshape is being performed at the * container or subarray level */ #define APPLY_METADATA_CHANGES 1 #define ROLLBACK_METADATA_CHANGES 0 int (*reshape_super)(struct supertype *st, unsigned long long size, int level, int layout, int chunksize, int raid_disks, int delta_disks, char *backup, char *dev, int direction, int verbose); /* optional */ int (*manage_reshape)( /* optional */ int afd, struct mdinfo *sra, struct reshape *reshape, struct supertype *st, unsigned long blocks, int *fds, unsigned long long *offsets, int dests, int *destfd, unsigned long long *destoffsets); /* for mdmon */ int (*open_new)(struct supertype *c, struct active_array *a, char *inst); /* Tell the metadata handler the current state of the array. * This covers whether it is known to be consistent (no pending writes) * and how far along a resync is known to have progressed * (in a->resync_start). * resync status is really irrelevant if the array is not consistent, * but some metadata (DDF!) have a place to record the distinction. * If 'consistent' is '2', then the array can mark it dirty if a * resync/recovery/whatever is required, or leave it clean if not. * Return value is 0 dirty (not consistent) and 1 if clean. * it is only really important if consistent is passed in as '2'. */ int (*set_array_state)(struct active_array *a, int consistent); /* When the state of a device might have changed, we call set_disk to * tell the metadata what the current state is. * Typically this happens on spare->in_sync and (spare|in_sync)->faulty * transitions. * set_disk might be called when the state of the particular disk has * not in fact changed. */ void (*set_disk)(struct active_array *a, int n, int state); void (*sync_metadata)(struct supertype *st); void (*process_update)(struct supertype *st, struct metadata_update *update); /* Prepare updates allocates extra memory that might be * needed. If the update cannot be understood, return 0. */ int (*prepare_update)(struct supertype *st, struct metadata_update *update); /* activate_spare will check if the array is degraded and, if it * is, try to find some spare space in the container. * On success, it add appropriate updates (For process_update) to * to the 'updates' list and returns a list of 'mdinfo' identifying * the device, or devices as there might be multiple missing * devices and multiple spares available. */ struct mdinfo *(*activate_spare)(struct active_array *a, struct metadata_update **updates); /* * Return statically allocated string that represents metadata specific * controller domain of the disk. The domain is used in disk domain * matching functions. Disks belong to the same domain if the they have * the same domain from mdadm.conf and belong the same metadata domain. * Returning NULL or not providing this handler means that metadata * does not distinguish the differences between disks that belong to * different controllers. They are in the domain specified by * configuration file (mdadm.conf). * In case when the metadata has the notion of domains based on disk * it shall return NULL for disks that do not belong to the controller * the supported domains. Such disks will form another domain and won't * be mixed with supported ones. */ const char *(*get_disk_controller_domain)(const char *path); /* for external backup area */ int (*recover_backup)(struct supertype *st, struct mdinfo *info); /* validate container after assemble */ int (*validate_container)(struct mdinfo *info); int swapuuid; /* true if uuid is bigending rather than hostendian */ int external; const char *name; /* canonical metadata name */ } *superlist[]; extern struct superswitch super0, super1; extern struct superswitch super_imsm, super_ddf; extern struct superswitch mbr, gpt; struct metadata_update { int len; char *buf; void *space; /* allocated space that monitor will use */ void **space_list; /* list of allocated spaces that monitor can * use or that it returned. */ struct metadata_update *next; }; /* A supertype holds a particular collection of metadata. * It identifies the metadata type by the superswitch, and the particular * sub-version of that metadata type. * metadata read in or created is stored in 'sb' and 'info'. * There are also fields used by mdmon to track containers. * * A supertype may refer to: * Just an array, possibly in a container * A container, not identifying any particular array * Info read from just one device, not yet fully describing the array/container. * * * A supertype is created by: * super_by_fd * guess_super * dup_super */ struct supertype { struct superswitch *ss; int minor_version; int max_devs; char container_devnm[32]; /* devnm of container */ void *sb; void *info; void *other; /* Hack used to convert v0.90 to v1.0 */ unsigned long long devsize; unsigned long long data_offset; /* used by v1.x only */ int ignore_hw_compat; /* used to inform metadata handlers that it should ignore HW/firmware related incompatability to load metadata. Used when examining metadata to display content of disk when user has no hw/firmare compatible system. */ struct metadata_update *updates; struct metadata_update **update_tail; /* extra stuff used by mdmon */ struct active_array *arrays; int sock; /* listen to external programs */ char devnm[32]; /* e.g. md0. This appears in metadata_version: * external:/md0/12 */ int devcnt; int retry_soon; int nodes; char *cluster_name; struct mdinfo *devs; }; extern struct supertype *super_by_fd(int fd, char **subarray); enum guess_types { guess_any, guess_array, guess_partitions }; extern struct supertype *guess_super_type(int fd, enum guess_types guess_type); static inline struct supertype *guess_super(int fd) { return guess_super_type(fd, guess_any); } extern struct supertype *dup_super(struct supertype *st); extern int get_dev_size(int fd, char *dname, unsigned long long *sizep); extern int must_be_container(int fd); extern int dev_size_from_id(dev_t id, unsigned long long *size); void wait_for(char *dev, int fd); /* * Data structures for policy management. * Each device can have a policy structure that lists * various name/value pairs each possibly with a metadata associated. * The policy list is sorted by name/value/metadata */ struct dev_policy { struct dev_policy *next; char *name; /* None of these strings are allocated. They are * all just references to strings which are known * to exist elsewhere. * name and metadata can be compared by address equality. */ const char *metadata; const char *value; }; extern char pol_act[], pol_domain[], pol_metadata[], pol_auto[]; /* iterate over the sublist starting at list, having the same * 'name' as 'list', and matching the given metadata (Where * NULL matches anything */ #define pol_for_each(item, list, _metadata) \ for (item = list; \ item && item->name == list->name; \ item = item->next) \ if (!(!_metadata || !item->metadata || _metadata == item->metadata)) \ ; else /* * policy records read from mdadm are largely just name-value pairs. * The names are constants, not strdupped */ struct pol_rule { struct pol_rule *next; char *type; /* rule_policy or rule_part */ struct rule { struct rule *next; char *name; char *value; char *dups; /* duplicates of 'value' with a partNN appended */ } *rule; }; extern char rule_policy[], rule_part[]; extern char rule_path[], rule_type[]; extern char type_part[], type_disk[]; extern void policyline(char *line, char *type); extern void policy_add(char *type, ...); extern void policy_free(void); extern struct dev_policy *path_policy(char *path, char *type); extern struct dev_policy *disk_policy(struct mdinfo *disk); extern struct dev_policy *devid_policy(int devid); extern void dev_policy_free(struct dev_policy *p); //extern void pol_new(struct dev_policy **pol, char *name, char *val, char *metadata); extern void pol_add(struct dev_policy **pol, char *name, char *val, char *metadata); extern struct dev_policy *pol_find(struct dev_policy *pol, char *name); enum policy_action { act_default, act_include, act_re_add, act_spare, /* This only applies to bare devices */ act_spare_same_slot, /* this allows non-bare devices, * but only if recent removal */ act_force_spare, /* this allow non-bare devices in any case */ act_err }; extern int policy_action_allows(struct dev_policy *plist, const char *metadata, enum policy_action want); extern int disk_action_allows(struct mdinfo *disk, const char *metadata, enum policy_action want); struct domainlist { struct domainlist *next; const char *dom; }; extern int domain_test(struct domainlist *dom, struct dev_policy *pol, const char *metadata); extern struct domainlist *domain_from_array(struct mdinfo *mdi, const char *metadata); extern void domainlist_add_dev(struct domainlist **dom, int devid, const char *metadata); extern void domain_free(struct domainlist *dl); extern void domain_merge(struct domainlist **domp, struct dev_policy *pol, const char *metadata); void domain_add(struct domainlist **domp, char *domain); extern void policy_save_path(char *id_path, struct map_ent *array); extern int policy_check_path(struct mdinfo *disk, struct map_ent *array); #if __GNUC__ < 3 struct stat64; #endif #define HAVE_NFTW we assume #define HAVE_FTW #ifdef __UCLIBC__ # include <features.h> # ifndef __UCLIBC_HAS_LFS__ # define lseek64 lseek # endif # ifndef __UCLIBC_HAS_FTW__ # undef HAVE_FTW # undef HAVE_NFTW # endif #endif #ifdef __dietlibc__ # undef HAVE_NFTW #endif #if defined(__KLIBC__) # undef HAVE_NFTW # undef HAVE_FTW #endif #ifndef HAVE_NFTW # define FTW_PHYS 1 # ifndef HAVE_FTW struct FTW {}; # endif #endif #ifdef HAVE_FTW # include <ftw.h> #endif extern int add_dev(const char *name, const struct stat *stb, int flag, struct FTW *s); extern int Manage_ro(char *devname, int fd, int readonly); extern int Manage_run(char *devname, int fd, struct context *c); extern int Manage_stop(char *devname, int fd, int quiet, int will_retry); extern int Manage_subdevs(char *devname, int fd, struct mddev_dev *devlist, int verbose, int test, char *update, int force); extern int autodetect(void); extern int Grow_Add_device(char *devname, int fd, char *newdev); extern int Grow_addbitmap(char *devname, int fd, struct context *c, struct shape *s); extern int Grow_reshape(char *devname, int fd, struct mddev_dev *devlist, unsigned long long data_offset, struct context *c, struct shape *s); extern int Grow_restart(struct supertype *st, struct mdinfo *info, int *fdlist, int cnt, char *backup_file, int verbose); extern int Grow_continue(int mdfd, struct supertype *st, struct mdinfo *info, char *backup_file, int forked, int freeze_reshape); extern int restore_backup(struct supertype *st, struct mdinfo *content, int working_disks, int spares, char **backup_filep, int verbose); extern int Grow_continue_command(char *devname, int fd, char *backup_file, int verbose); extern int Assemble(struct supertype *st, char *mddev, struct mddev_ident *ident, struct mddev_dev *devlist, struct context *c); extern int Build(char *mddev, struct mddev_dev *devlist, struct shape *s, struct context *c); extern int Create(struct supertype *st, char *mddev, char *name, int *uuid, int subdevs, struct mddev_dev *devlist, struct shape *s, struct context *c, unsigned long long data_offset); extern int Detail(char *dev, struct context *c); extern int Detail_Platform(struct superswitch *ss, int scan, int verbose, int export, char *controller_path); extern int Query(char *dev); extern int ExamineBadblocks(char *devname, int brief, struct supertype *forcest); extern int Examine(struct mddev_dev *devlist, struct context *c, struct supertype *forcest); extern int Monitor(struct mddev_dev *devlist, char *mailaddr, char *alert_cmd, struct context *c, int daemonise, int oneshot, int dosyslog, char *pidfile, int increments, int share); extern int Kill(char *dev, struct supertype *st, int force, int verbose, int noexcl); extern int Kill_subarray(char *dev, char *subarray, int verbose); extern int Update_subarray(char *dev, char *subarray, char *update, struct mddev_ident *ident, int quiet); extern int Wait(char *dev); extern int WaitClean(char *dev, int sock, int verbose); extern int SetAction(char *dev, char *action); extern int Incremental(struct mddev_dev *devlist, struct context *c, struct supertype *st); extern void RebuildMap(void); extern int IncrementalScan(struct context *c, char *devnm); extern int IncrementalRemove(char *devname, char *path, int verbose); extern int CreateBitmap(char *filename, int force, char uuid[16], unsigned long chunksize, unsigned long daemon_sleep, unsigned long write_behind, unsigned long long array_size, int major); extern int ExamineBitmap(char *filename, int brief, struct supertype *st); extern int Write_rules(char *rule_name); extern int bitmap_update_uuid(int fd, int *uuid, int swap); extern unsigned long bitmap_sectors(struct bitmap_super_s *bsb); extern int Dump_metadata(char *dev, char *dir, struct context *c, struct supertype *st); extern int Restore_metadata(char *dev, char *dir, struct context *c, struct supertype *st, int only); extern int md_get_version(int fd); extern int get_linux_version(void); extern int mdadm_version(char *version); extern unsigned long long parse_size(char *size); extern int parse_uuid(char *str, int uuid[4]); extern int parse_layout_10(char *layout); extern int parse_layout_faulty(char *layout); extern long parse_num(char *num); extern int parse_cluster_confirm_arg(char *inp, char **devname, int *slot); extern int check_ext2(int fd, char *name); extern int check_reiser(int fd, char *name); extern int check_raid(int fd, char *name); extern int check_partitions(int fd, char *dname, unsigned long long freesize, unsigned long long size); extern int get_mdp_major(void); extern int get_maj_min(char *dev, int *major, int *minor); extern int dev_open(char *dev, int flags); extern int open_dev(char *devnm); extern void reopen_mddev(int mdfd); extern int open_dev_flags(char *devnm, int flags); extern int open_dev_excl(char *devnm); extern int is_standard(char *dev, int *nump); extern int same_dev(char *one, char *two); extern int compare_paths (char* path1,char* path2); extern void enable_fds(int devices); extern int parse_auto(char *str, char *msg, int config); extern struct mddev_ident *conf_get_ident(char *dev); extern struct mddev_dev *conf_get_devs(void); extern int conf_test_dev(char *devname); extern int conf_test_metadata(const char *version, struct dev_policy *pol, int is_homehost); extern struct createinfo *conf_get_create_info(void); extern void set_conffile(char *file); extern char *conf_get_mailaddr(void); extern char *conf_get_mailfrom(void); extern char *conf_get_program(void); extern char *conf_get_homehost(int *require_homehostp); extern char *conf_get_homecluster(void); extern char *conf_line(FILE *file); extern char *conf_word(FILE *file, int allow_key); extern void print_quoted(char *str); extern void print_escape(char *str); extern int use_udev(void); extern unsigned long GCD(unsigned long a, unsigned long b); extern int conf_name_is_free(char *name); extern int conf_verify_devnames(struct mddev_ident *array_list); extern int devname_matches(char *name, char *match); extern struct mddev_ident *conf_match(struct supertype *st, struct mdinfo *info, char *devname, int verbose, int *rvp); extern int experimental(void); extern void free_line(char *line); extern int match_oneof(char *devices, char *devname); extern void uuid_from_super(int uuid[4], mdp_super_t *super); extern const int uuid_zero[4]; extern int same_uuid(int a[4], int b[4], int swapuuid); extern void copy_uuid(void *a, int b[4], int swapuuid); extern char *__fname_from_uuid(int id[4], int swap, char *buf, char sep); extern char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep); extern unsigned long calc_csum(void *super, int bytes); extern int enough(int level, int raid_disks, int layout, int clean, char *avail); extern int enough_fd(int fd); extern int ask(char *mesg); extern unsigned long long get_component_size(int fd); extern void remove_partitions(int fd); extern int test_partition(int fd); extern int test_partition_from_id(dev_t id); extern int get_data_disks(int level, int layout, int raid_disks); extern unsigned long long calc_array_size(int level, int raid_disks, int layout, int chunksize, unsigned long long devsize); extern int flush_metadata_updates(struct supertype *st); extern void append_metadata_update(struct supertype *st, void *buf, int len); extern int assemble_container_content(struct supertype *st, int mdfd, struct mdinfo *content, struct context *c, char *chosen_name, int *result); #define INCR_NO 1 #define INCR_UNSAFE 2 #define INCR_ALREADY 4 #define INCR_YES 8 extern struct mdinfo *container_choose_spares(struct supertype *st, unsigned long long min_size, struct domainlist *domlist, char *spare_group, const char *metadata, int get_one); extern int move_spare(char *from_devname, char *to_devname, dev_t devid); extern int add_disk(int mdfd, struct supertype *st, struct mdinfo *sra, struct mdinfo *info); extern int remove_disk(int mdfd, struct supertype *st, struct mdinfo *sra, struct mdinfo *info); extern int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info); unsigned long long min_recovery_start(struct mdinfo *array); extern char *human_size(long long bytes); extern char *human_size_brief(long long bytes, int prefix); extern void print_r10_layout(int layout); extern char *find_free_devnm(int use_partitions); extern void put_md_name(char *name); extern char *devid2kname(int devid); extern char *devid2devnm(int devid); extern int devnm2devid(char *devnm); extern char *get_md_name(char *devnm); extern char DefaultConfFile[]; extern int create_mddev(char *dev, char *name, int autof, int trustworthy, char *chosen); /* values for 'trustworthy' */ #define LOCAL 1 #define LOCAL_ANY 10 #define FOREIGN 2 #define METADATA 3 extern int open_mddev(char *dev, int report_errors); extern int open_container(int fd); extern int metadata_container_matches(char *metadata, char *devnm); extern int metadata_subdev_matches(char *metadata, char *devnm); extern int is_container_member(struct mdstat_ent *ent, char *devname); extern int is_subarray_active(char *subarray, char *devname); extern int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet); extern struct superswitch *version_to_superswitch(char *vers); extern int mdmon_running(char *devnm); extern int mdmon_pid(char *devnm); extern int check_env(char *name); extern __u32 random32(void); extern int start_mdmon(char *devnm); extern int child_monitor(int afd, struct mdinfo *sra, struct reshape *reshape, struct supertype *st, unsigned long stripes, int *fds, unsigned long long *offsets, int dests, int *destfd, unsigned long long *destoffsets); void abort_reshape(struct mdinfo *sra); void *super1_make_v0(struct supertype *st, struct mdinfo *info, mdp_super_t *sb0); extern void fmt_devname(char *name, int num); extern char *stat2devnm(struct stat *st); extern char *fd2devnm(int fd); extern int in_initrd(void); struct cmap_hooks { void *cmap_handle; /* corosync lib related */ int (*initialize)(cmap_handle_t *handle); int (*get_string)(cmap_handle_t handle, const char *string, char **name); int (*finalize)(cmap_handle_t handle); }; extern void set_cmap_hooks(void); extern void set_hooks(void); struct dlm_hooks { void *dlm_handle; /* dlm lib related */ dlm_lshandle_t (*create_lockspace)(const char *name, unsigned int mode); int (*release_lockspace)(const char *name, dlm_lshandle_t ls, int force); int (*ls_lock)(dlm_lshandle_t lockspace, uint32_t mode, struct dlm_lksb *lksb, uint32_t flags, const void *name, unsigned int namelen, uint32_t parent, void (*astaddr) (void *astarg), void *astarg, void (*bastaddr) (void *astarg), void *range); int (*ls_unlock)(dlm_lshandle_t lockspace, uint32_t lkid, uint32_t flags, struct dlm_lksb *lksb, void *astarg); int (*ls_get_fd)(dlm_lshandle_t ls); int (*dispatch)(int fd); }; extern int get_cluster_name(char **name); extern int dlm_funs_ready(void); extern int cluster_get_dlmlock(int *lockid); extern int cluster_release_dlmlock(int lockid); extern void set_dlm_hooks(void); #define _ROUND_UP(val, base) (((val) + (base) - 1) & ~(base - 1)) #define ROUND_UP(val, base) _ROUND_UP(val, (typeof(val))(base)) #define ROUND_UP_PTR(ptr, base) ((typeof(ptr)) \ (ROUND_UP((unsigned long)(ptr), base))) static inline int is_subarray(char *vers) { /* The version string for a 'subarray' (an array in a container) * is * /containername/componentname for normal read-write arrays * -containername/componentname for arrays which mdmon must not * reconfigure. They might be read-only * or might be undergoing reshape etc. * containername is e.g. md0, md_d1 * componentname is dependant on the metadata. e.g. '1' 'S1' ... */ return (*vers == '/' || *vers == '-'); } static inline char *to_subarray(struct mdstat_ent *ent, char *container) { return &ent->metadata_version[10+strlen(container)+1]; } #ifdef DEBUG #define dprintf(fmt, arg...) \ fprintf(stderr, "%s: %s: "fmt, Name, __func__, ##arg) #define dprintf_cont(fmt, arg...) \ fprintf(stderr, fmt, ##arg) #else #define dprintf(fmt, arg...) \ ({ if (0) fprintf(stderr, "%s: %s: " fmt, Name, __func__, ##arg); 0; }) #define dprintf_cont(fmt, arg...) \ ({ if (0) fprintf(stderr, fmt, ##arg); 0; }) #endif #include <assert.h> #include <stdarg.h> static inline int xasprintf(char **strp, const char *fmt, ...) { va_list ap; int ret; va_start(ap, fmt); ret = vasprintf(strp, fmt, ap); va_end(ap); assert(ret >= 0); return ret; } #ifdef DEBUG #define pr_err(fmt, args...) fprintf(stderr, "%s: %s: "fmt, Name, __func__, ##args) #else #define pr_err(fmt, args...) fprintf(stderr, "%s: "fmt, Name, ##args) #endif #define cont_err(fmt ...) fprintf(stderr, " " fmt) void *xmalloc(size_t len); void *xrealloc(void *ptr, size_t len); void *xcalloc(size_t num, size_t size); char *xstrdup(const char *str); #define LEVEL_MULTIPATH (-4) #define LEVEL_LINEAR (-1) #define LEVEL_FAULTY (-5) /* kernel module doesn't know about these */ #define LEVEL_CONTAINER (-100) #define LEVEL_UNSUPPORTED (-200) /* the kernel does know about this one ... */ #define LEVEL_NONE (-1000000) /* faulty stuff */ #define WriteTransient 0 #define ReadTransient 1 #define WritePersistent 2 #define ReadPersistent 3 #define WriteAll 4 /* doesn't go to device */ #define ReadFixable 5 #define Modes 6 #define ClearErrors 31 #define ClearFaults 30 #define AllPersist 100 /* internal use only */ #define NoPersist 101 #define ModeMask 0x1f #define ModeShift 5 #ifdef __TINYC__ #undef minor #undef major #undef makedev #define minor(x) ((x)&0xff) #define major(x) (((x)>>8)&0xff) #define makedev(M,m) (((M)<<8) | (m)) #endif /* for raid4/5/6 */ #define ALGORITHM_LEFT_ASYMMETRIC 0 #define ALGORITHM_RIGHT_ASYMMETRIC 1 #define ALGORITHM_LEFT_SYMMETRIC 2 #define ALGORITHM_RIGHT_SYMMETRIC 3 /* Define non-rotating (raid4) algorithms. These allow * conversion of raid4 to raid5. */ #define ALGORITHM_PARITY_0 4 /* P or P,Q are initial devices */ #define ALGORITHM_PARITY_N 5 /* P or P,Q are final devices. */ /* DDF RAID6 layouts differ from md/raid6 layouts in two ways. * Firstly, the exact positioning of the parity block is slightly * different between the 'LEFT_*' modes of md and the "_N_*" modes * of DDF. * Secondly, or order of datablocks over which the Q syndrome is computed * is different. * Consequently we have different layouts for DDF/raid6 than md/raid6. * These layouts are from the DDFv1.2 spec. * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but * leaves RLQ=3 as 'Vendor Specific' */ #define ALGORITHM_ROTATING_ZERO_RESTART 8 /* DDF PRL=6 RLQ=1 */ #define ALGORITHM_ROTATING_N_RESTART 9 /* DDF PRL=6 RLQ=2 */ #define ALGORITHM_ROTATING_N_CONTINUE 10 /*DDF PRL=6 RLQ=3 */ /* For every RAID5 algorithm we define a RAID6 algorithm * with exactly the same layout for data and parity, and * with the Q block always on the last device (N-1). * This allows trivial conversion from RAID5 to RAID6 */ #define ALGORITHM_LEFT_ASYMMETRIC_6 16 #define ALGORITHM_RIGHT_ASYMMETRIC_6 17 #define ALGORITHM_LEFT_SYMMETRIC_6 18 #define ALGORITHM_RIGHT_SYMMETRIC_6 19 #define ALGORITHM_PARITY_0_6 20 #define ALGORITHM_PARITY_N_6 ALGORITHM_PARITY_N /* Define PATH_MAX in case we don't use glibc or standard library does * not have PATH_MAX defined. Assume max path length is 4K characters. */ #ifndef PATH_MAX #define PATH_MAX 4096 #endif #define RESYNC_NONE -1 #define RESYNC_DELAYED -2 #define RESYNC_PENDING -3 #define RESYNC_UNKNOWN -4 /* When using "GET_DISK_INFO" it isn't certain how high * we need to check. So we impose an absolute limit of * MAX_DISKS. This needs to be much more than the largest * number of devices any metadata can support. Currently * v1.x can support 1920 */ #define MAX_DISKS 4096 /* Sometimes the 'size' value passed needs to mean "Maximum". * In those cases with use MAX_SIZE */ #define MAX_SIZE 1 /* We want to use unsigned numbers for sector counts, but need * a value for 'invalid'. Use '1'. */ #define INVALID_SECTORS 1 /* And another special number needed for --data_offset=variable */ #define VARIABLE_OFFSET 3